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Limits to computation

Minimum size of computing device

Maximum computational speed of a self-contained
system

Information storage in a finite volume
Energy consumption limit to:
-+ computation

* memory preservation



Minimum size of computing device



Transistor count

Processor Transistor count ¢  Daie of introduction ¢ Designer ¢ Process ¢ Aren ¢
I'MS 1000 8,000 15747 lexas Instruments | B,000 rm 11 rmm?
Intel 4004 2,300 1971 Intel 10,00 rm 12mmé
Infel 2008 3,500 1972 Intel 10,00 rm 14 mm¥
MOS Technology £502 3,510K. 1975 MOS Technology | 8,000 rm 21 mn¥
Moto-ola 3800 4,100 1974 Motorola 6,000 rm 16 mm¢
Infel 2080 4,500 1974 Intal 6,000 rm 20 mm¥
RCA 1802 5,000 1974 RCA 5,000 rm 27 mime
Infel 2085 6,500 1978 Int&l 3,000 rm 20 mime

.
81-corz Xeon Phi 5,000,00C,000 #= 2012 Intz| 22 nm 720 mm2
Xtox On2 main SoGC 5,00C,000,C00 2073 Microsoft/AMD z8 nm 383 mm?
16-core Xaan Haswe L5 5, 56,000,000 2014 Intel 27 nm HEH1 mm?
IBM 214 6,10C,000,000 2017 IEM 14 nm 8396 mm?
Xbox One X (Project Scorpic) main ScC 7.000,002,0004-] 2017 Microsofi/AMD 16 nm 360 mmel<0l
IBM z13 Storage Cortroller 7.12C,000,C00 2016 IEM 22 nm 578 mm2
22-ccre Xeon Broadwell-E5 7,200,000,0004!] 2016 Intz| 14 nm 436 mm?
POW_RY 8,000,000, 600 2017 1M 14 nm 595 mm?
72-corz Xeon Phi 8,00C,000,C00 2018 Intsl 14 nm 833 mm?
IBM z14 Siorage Cortioller 9,72C,000,C00 2017 IEM 14 nm 986 mm?
32-core SPARC M7 10,000,000,0001! 2015 Oracle 20 nm
Centriq 2400 18,000,000,00043] 2017 Qualeomm 10 nm 208 mme
dz-cnre AML Epys 19, 200,000,000 2017 AMD 1anm | 768 mm® (4 x 192 mm?)




Moore’s law

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Transistor size

“Alcune riflessioni sulla legge di Moore”, Roberto Saracco, Future Center, TILAB

In terms of size [of transistors| you can see that we're approaching the
size of atoms which is a fundamental barrier, but it'll be two or three
generations before we get that far - but that's as far out as we've ever
been able to see. We have another 10 to 20 years before we reach a

fundamental limit. By then they'll be able to make bigger chips and have

transistor budgets in the billions. - G. Moore



-nergy limits speed of computation



—nergy limits speed of computation

- What limits the laws of physics place on the speed of
computation”?

Ultimate physical limits to computation - Seth Lloyd



—nergy limits speed of computation

Heisenberg uncertainty principle

AEAt > h/2

wrong interpretation: it takes time At to measure energy to an
accuracy AE

right interpretation: a quantum state with spread in energy AE
takes time at least

At = wh/2AFE
to evolve to an orthogonal (and hence distinguishable) state

Ultimate physical limits to computation - Seth Lloyd



Maximum computational speed of a self-contained
system

Bremermann's Limit is the maximum computational
speed of a self-contained system in the material universe.
't is derived from Einstein's mass-energy equivalency and
the Heisenberg uncertainty principle, and is ¢2/h = 1.36 x
10°0 bits per second per kilogram

- The Margolus-Levitin theorem gives a fundamental

imit on gquantum computation (strictly speaking on all
forms on computation). The processing rate cannot be
nigher than 6 x 1033 operations per second per joule of

energy




Maximum computational speed of a laptop




Maximum computational speed of a laptop

- |t the mass Is m then E = mc¢?2
- m=1Kg, E=1(31082 =approx = 1017 J

- At = approx = 1034 /1017 = 1031 s

Ultimate physical limits to computation - Seth Lloyd



Comparison with existing computers

- Conventional laptops operate much more slowly than the
ultimate laptop

- Two reasons for this inefficiency:

- most of the energy Is locked up In the mass of the
particles of which the computer is constructed

- a conventional computer employs many degrees of
freedom for registering a single bit

Ultimate physical limits to computation - Seth Lloyd



Memory space Iimits



Memory space limits

- The amount of information that a physical system can
store and process is related to the number of distinct
physical states accessible to the system

- A collection of M two-state systems has 2M accessible
states and can register M bits of information

-+ A system with N accessible states can register logzN bits
of information

Ultimate physical limits to computation - Seth Lloyd



Memory space limits

- The number of accessible state, W, of a physical system

IS related to its thermodynamic entropy by the formula:
S = ks logW

- The amount of information that can be registered by a
ohysical system is | = S(E)/ks log 2

- S(E) is the thermodynamic entropy of a system with
expectation value for the energy E

Ultimate physical limits to computation - Seth Lloyd



Information storage in a finite volume

- The Bekenstein bound limits the amount of information
that can be contained within a given finite region of space
which has a finite amount of energy:

2k RE
<

5 < hc

2mcRm

I < ~ 2. 1043
S o HT7 x 10"mR

Ultimate physical limits to computation - Seth Lloyd



Information storage in a finite volume

- Human brain

IncR
[ < 2T 9 577 x 108 mER

— hln?2

- mass m=1.5 kg

+ volume of 1260 cm3

+ approximating volume to a sphere R = 6.7 cm
| = 2.6 x1042 bits

. O = 2! states of the human brain must be less than =~ 107-8%10*



Comparison with existing computers

- The amount of information that can be stored by the
ultimate laptop = 1037 bits

- Conventional laptops can store = 1012 bits
+ This Is because conventional laptops use many degrees

of freedom to store a bit where the ultimate laptop uses
just one

- There are considerable advantages to using many
degrees of freedom to store information, stability and
controllability being perhaps the most important

Ultimate physical limits to computation - Seth Lloyd



Minimum energy consumption for computation



Information
IS
physical

Landauer R. IBM Journal Of Research And Development, Vol. 5, no. 3, 1961



Maxwell’'s demon

Q ) - |
| E A

gas equilibrates to initial attach weight to piston
temperature




Maxwell’s demon

Cyclic process converts heat

lll completely into work!

Violates second law of
thermodynamics!

No process is possible whose sole
result is the absorption of heat from a
reservolr and the conversion of this heat

INto work.

to work




Maxwell’'s demon

d ) 0100100011110

) =
It = A
gas equilibrates to initial attach weight to piston
temperature

heat has been converted pressure lifts weight
to work



Information
IS
physical

Landauer R. IBM Journal Of Research And Development, Vol. 5, no. 3, 1961



What happens when
computation is logically
Irreversible”

* Minimum amount of energy
required greater than zero

- Let assume the operation of bit
reset

- # of initial states: 2

- # of final states: 1




Landauer principle

- Initial condition: two possible

states § — kg log W
Q < TAS

- Final condition: one possible
state

S; = kplog 2
Sr=kplogl
AS =S5r—5;,=—kplog?2

- Heat produced

Q <TAS = —kpTlog?2

L




Landauer principle at room temperature

Q< TAS =—kgTlog2~107%1J
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Figure 3: Energy per logic operation

After Electronics Beyond Nano-scale CMOS, Shekhar Borkar



Landauer principle
experimental verification

Brownian particle in a double-well potential Berut et al. Nature 2012

A i

Ciliberto ENS Lyon
Measured erasure cycle:
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The physics of information: from Maxwell's demon to Landauer - Eric Lutz - University of Erlangen-Nurnberg



Landauer principle
experimental verification

Experimental set-up Optical trap

LS ( BS
Ciode
-
1 IRF
I \, ~2=980rm
Z Condenser_ e
- Y Cell | AN
‘ . \‘./I 'A “\'
Obpctwoeiix 20pm \I
!
/l
Pizo- stage <G »I 3 '
> DM2
P A
totle o i & ow
> ~] 4
Camera repide _ .
2.=633nm “>(.’
acc Q.
TEMHz

LS white ight source

CM  dichroic mimor

M mirror

IRF infrared fiter

IF  interference filter

P  polanzer

A analvzer

QD quadrant phcto diode

Even if you're not burning books, destroying information generates heat. - Sergio Cicliberto



Landauer principle
experimental verification

Generic two-state memory:

@ Iinitial configuration: two states with equal probability 1/2

10

— system can store 1 bit of information a\/‘ \J

6

0

Shannon entropy: S; = — > _pplnpy=1In2 =

@ final configuration: one state with probability 1

10

— system can store 0 bit of information f\/ \ /

5

0

Shannon entropy: ¢ — — > pnlnpy, — 0

— original bit has been deleted: AS = —1In2
The physics of information: from Maxwell's demon to Landauer - Eric Lutz - University of Erlangen-Nurnberg



Landauer principle
experimental verification

Second law of thermodynamics (for system and reservoir):

AS = ASsys | ASrgs > 0

Reservoir always in equilibrium: Qres = TASres >  TASsys

Equivalence between entropies: ASsys = KAS = —kin2

Heat produced in reservoir:

Ores > kl'In2

— connection between information theory and thermodynamics

(Qres = KT In2 in quasistatic limit i.e. long cycle duration)

The physics of information: from Maxwell's demon to Landauer - Eric Lutz - University of Erlangen-Nurnberg



Landauer principle
experimental verification

Experimental results:

We measure work W and deduce heat Q = —-AU + W = W

3- .-
_t_
g 2 ,
S +
t
1 T L = sl
__________  RTSINIAD o -1
0 .
0 10 20 30 40

—» Landauer can be bound approached but not exceeded

Note: kT In2 ~ 3 x 10~2'J at room temperature

The physics of information: from Maxwell's demon to Landauer - Eric Lutz - University of Erlangen-Nurnberg



Reset on colloidal particles

Colloidal particle bit Total energy landscape
3 Bit value 0 ' Bil value 1 E(x,t) =U(x,t) — Fof(t)x
"3 0 I a b
TN T U, t) = — 2g(t)x + 2
= .; : *
rla.u.

e g(t) and f(t): dimensionless parameter in [0, 1]. Their value at time
t depends on a given protocol.

Reset Protocol

o
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Chiuchiu, D. "Time-dependent study of bit reset." EPL (Europhysics Letters) 109.3 (2015): 30002.



Time-dependent study

For a fixed Tor with Q(Tpr) = = TAS(Tpr), Study —TAS(1),
Q(t), W (1), AE(H).

—TAS(t) and Q(t) | W(t) and AE(t)
Sl ofstepl  step2 ol | m—
N = ] -
< 1 g« BN -
"g 0.5 11 =)= “ 0 —4—r ! .
o OfH 2 E.‘a '40';5\ ~50 ? x %x x
o 2  _anl : R E -
SER B oo O ol ¥ 2
Q’Zm B i o ;Z;IAISn(tz) | med) t/Tpr ]:: x
101 02 03 04 05 06 07 08 09 1 -100r step 1 step 2 &
t/Tp’r 0 01 02 03 04 05 06 07 08 09 1
t/Tpr
Q(t) = —TAS(t), Vtel0,7] ] Consistent with qualitative analysis.
4

Chiuchiu, D. "Time-dependent study of bit reset." EPL (Europhysics Letters) 109.3 (2015): 30002.



Landauer principle
experimental verification

week ending

PRL 113, 190601 (2014) PHYSICAL REVIEW LETTERS 7 NOVEMBER 2014

S

High-Precision Test of Landauer’s Principle in a Feedback Trap

Yonggun Jun, Mom¢ilo Gavrilov, and John Bechhoefer’
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 156, Canada
(Received 15 August 2014; published 4 November 2014)

We confirm Landauer’s 1961 hypothesis that reducing the number of possible macroscopic states in a
system by a factor of 2 requires work of at least k7" In 2. Our experiment uses a colloidal particle in a time-
dependent, virtual potential created by a feedback trap to implement Landauer’s erasure operation. In a
control experiment, similar manipulations that do not reduce the number of system states can be done
reversibly. Erasing information thus requires work. In individual cycles, the work to erase can be below the
Landauer limit, consistent with the Jarzynski equality.

DOI: 10.1103/PhysRevLett.113.190601 PACS numbers: 05.70.Ln, 03.67.-a, 05.20.-y, 05.90.+m

Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer’s Principle in a Feedback Trap. Physical Review Letters, 113(19), 190601.



Landauer principle
experimental verification

Feedback Trap
u . qu

Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer’s Principle in a Feedback Trap. Physical Review Letters, 113(19), 190601.




Landauer principle
experimental verification

Erasure protocol

time

REQE!

Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer’s Principle in a Feedback Trap. Physical Review Letters, 113(19), 190601.



Landauer principle
experimental verification

Work series for individual cycles

Probability density

Work (KT) Mean of work

Jun, Y., Gavrilov, M., & Bechhoefer, J. (2014). High-Precision Test of Landauer’s Principle in a Feedback Trap. Physical Review Letters, 113(19), 190601.



Beating the Landauer's limit by trading energy with
uncertainty

AS = Sf - Sz - kB(ln(l) — 111(2)) — —kB 1n(2)
S¢(Pe) =—kp((1—PFP.)In(1 — P.) + P.In(Fe))

Q(P.) = —kgT((1—-P,)In(1 — P,)+ P.In(FP,)) +
—kBTln(2)

Beating the Landauer's limit by trading energy with uncertainty - L. Gammaitoni - arXiv:1111.2937 [cond-mat.mtrl-sci]


http://arxiv.org/abs/1111.2937

Beating the Landauer's limit by trading energy with
uncertainty

3 X10 | | | | | | | | |
)5 Landauer limit ]
Q(P.) = —kgT((1—-P,)In(1 — P.,)+ P.In(P,)) +
2 —kBTln(2)
SEE ]
S
1F- _
0.5 -
0() 0.:35 0.I1 0.;5 0.I2 0.125 0.13 0.2135 0.I4 0.45 0.5

Beating the Landauer's limit by trading energy with uncertainty - L. Gammaitoni - arXiv:1111.2937 [cond-mat.mtrl-sci]


http://arxiv.org/abs/1111.2937

Micro-electromechanical memory bit based on
magnetic repulsion

3D
positioner

Uel == 1/2kx2
3 o(m; -r)(msy-r
Fo(r,m;,my;) = F'UTOS[(ml -T)my + (mp - r)m; + (m; - mp)r — (m 7')2( 2 )r]

Micro-electromechanical memory bit based on magnetic repulsion, Lopez-Suarez, Miquel and Neri, Igor, Applied Physics Letters, 109, 133505 (2016)



Micro-electromechanical memory bit based on
magnetic repulsion
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Micro-electromechanical memory bit based on magnetic repulsion, Lopez-Suarez, Miquel and Neri, Igor, Applied Physics Letters, 109, 133505 (2016)




Micro-electromechanical memory bit based on
magnetic repulsion

Micro-electromechanical memory bit based on magnetic repulsion, Lopez-Suarez, Miquel and Neri, Igor, Applied Physics Letters, 109, 133505 (2016)



Micro-electromechanical memory bit based on
magnetic repulsion
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Orders of magnitude above Landauer limit!

Micro-electromechanical memory bit based on magnetic repulsion, Lopez-Suarez, Miquel and Neri, Igor, Applied Physics Letters, 109, 133505 (2016)



Solution: increase the temperature
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Neri, Igor, and Miquel Lopez-Suarez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).



Reset protocol

Barrier

Potetial energy

NAVAVANIN

Steps for reset from '0" to 'l

Force

Fm.n B

1] —

M aU(x l) M,

ok_
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0.0

x(um)

04k

0.8
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O(R) > kT [In(2) + R n(R) + (1 — B)In(1 - B)

0.0

1 2 1 2 1 2
0.1 0.2 0.3 0.4
Time (s)

Neri, Igor, and Miquel Lopez-Suarez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).



L andauer reset with error
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Neri, Igor, and Miquel Lopez-Suarez. "Heat production and error probability relation in Landauer reset at effective temperature." Scientific Reports 6 (2016).



Logically irreversible devices

We shall call a device logically
irreversible if the output of a device
does not uniquely define the inputs.

We believe that devices exhibiting
logical irreversibility are essential to
computing. Logical irreversibility, we

believe, in turn implies physical

/rreverS/b///ty and the latter is
accompanied by dissipative effects.

Landauer R. IBM Journal Of Research And Development, Vol. 5, no. 3, 1961



Information is Physical

» A®B

Rolt Landauer, 1961. Whenever we use a logically
irreversible gate we dissipate energy into the
environment.



Logically irreversible devices

Landauer has posed the question of whether logical
irreversibility is an unavoidable feature of useful
computers, arquing that it is, and has demonstrated
the physical and philosophical importance of this
question by showing that whenever a physical
computer throws away information about its previous
state it must generate a corresponding amount of
entropy. Therefore, a computer must dissipate at
least ke In2 of energy (about 3 X 1021 Joule at room
temperature) for each bit of information it erases or
otherwise throws away.

Bennett C. IBM Journal of Research and Development, vol. 17, no. 6, pp. 525-532, 1973



Solution = Reversibllity

- Charles Bennett, 1973: There are no unavoidable energy
consumption requirements per step in a computer.

A A
B >*A®B

—nergy dissipation of reversible circuit, under ideal
ohysical circumstances, is zero.




Reversible computation

- Landauer/Bennett: all operations required in computation could
be performed in a reversible manner, thus dissipating no heat.

- The first condition for any deterministic device to be reversible is
that its input and output be unigquely retrievable from each other,
then it is called logically reversible.

-+ The second condition: a device can actually run backwards, then it
is called physically reversible, and the second law of
thermodynamics guarantees that it dissipates no heat.



Billiard ball computing

- Model of a reversible mechanical computer based on
Newtonian dynamics

- Proposed in 1982 by Edward Fredkin and Tommaso
Toffoli

- |t relies on the motion of spherical billiard balls in a
friction-free environment made of buffers against which
the balls bounce perfectly




Billiard lball computing

Assume no friction, elastic collisions




Billiard lball computing

Use “mirrors” to implement “switching device”
This device is reversible because physics is




Billiard ball computing

- Using balls and mirrors, we can implement lbasic logic
gates: AND, OR, NOT

- With a big enough billiard table, we could (in theory)
Implement a complete computer using a combination of
these gates

- BUT...

- pilliard balls don't work In practice



Billiard ball computing

- Thermal losses
- friction can't be ignored
- Collisions aren't perfectly elastic

- Chaotic motion

Balls are actually conglomerates of many atoms in various states of
vibration

- Can't know their “initial state” perfectly

-+ Small variations in initial conditional conditions can cause
exponentially large differences in final state



Reversible computing

- The reasoning on connection between physical and
logical reversibility applies only to systems that
encode input and outputs on the system itself.

- If the Input and output are not part of the computing
system (like in transistor based logic gates) there is no
connection between physical and logical
reversibility.



Sack to the real world....

OR gate

INGRESSO

0 0 0
0 1 1

V.
1 0 1 2

D A

linear

saturation

ves |




Back to the real world....

OR gate
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A B

VOUt




Sack to the real world....

OR gate
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The experimental setup

Vacuum chamber

51D

photodetector

NDF

ﬁl HeNe lascr I




The experimental setup
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The experimental setup
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The refresh procedure

t ..
Repeat = times

Symbolis 1

Symbol to store . with probability Refresh:
is known with no error Wait (1—-F)
Py is a function 1) Read the current symbol

E.g. 1 of tp 2) Write the read symbol

Yy

Symbol is 1
with probability
(1—Py) After Refresh

Diffusions of the physical
quantity that encodes
information are removed

After é repetitions, the
probability that there are

undesired transitions to 0

Pp=1-(1—Py)r




To evaluate the energy cost of the refresh
procedure we need:

- A physical description of the memory
- A characterisation of Pg as function of refresh time tr
- A physical description of the refresh procedure

- A characterisation of total error probabillity Pe as function
of refresh time tr after a fixed time



Physical description of the memory
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Characterisation of Po as function of refresh time
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Physical description of the refresh procedure
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Characterisation of Pe as function of refresh time




What Is the fundamental cost for preserving a
memory for a fixed time with a given probabillity
of error?




Study of the energy cost of refresh procedure
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» Considering the harmonic approximation
inside each well the refresh operation changes:

o(tn) = [0+ exp (1) (02— 02) in 0

Peaks are
the same




Minimum energy required to preserve a memory
over a fixed time with a given error probability
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Minimum energy required to preserve a memory
over a fixed time with a given error probability
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Minimum energy required to preserve a memory
over a fixed time with a given error probability

Pe=1x10-6 Pe=1x10-4

x10°8

1.5}

0.5¢

0 0.2 04 0.6 0.8 1
T/ O



Limits to computation

Minimum size of computing device

Maximum computational speed of a self-contained
system

Information storage in a finite volume
Energy consumption limit to:
-+ computation

* memory preservation
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